The Schema Theorem and Price's Theorem

نویسنده

  • Lee Altenberg
چکیده

Holland’s Schema Theorem is widely taken to be the foundation for explanations of the power of genetic algorithms (GAs). Yet some dissent has been expressed as to its implications. Here, dissenting arguments are reviewed and elaborated upon, explaining why the Schema Theorem has no implications for how well a GA is performing. Interpretations of the Schema Theorem have implicitly assumed that a correlation exists between parent and offspring fitnesses, and this assumption is made explicit in results based on Price’s Covariance and Selection Theorem. Schemata do not play a part in the performance theorems derived for representations and operators in general. However, schemata re-emerge when recombination operators are used. Using Geiringer’s recombination distribution representation of recombination operators, a “missing” schema theorem is derived which makes explicit the intuition for when a GA should perform well. Finally, the method of “adaptive landscape” analysis is examined and counterexamples offered to the commonly used correlation statistic. Instead, an alternative statistic — the transmission function in the fitness domain — is proposed as the optimal statistic for estimating GA performance from limited samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagonal arguments and fixed points

‎A universal schema for diagonalization was popularized by N.S‎. ‎Yanofsky (2003)‎, ‎based on a pioneering work of F.W‎. ‎Lawvere (1969)‎, ‎in which the existence of a (diagonolized-out and contradictory) object implies the existence of a fixed-point for a certain function‎. ‎It was shown that many self-referential paradoxes and diagonally proved theorems can fit in that schema‎. ‎Here‎, ‎we fi...

متن کامل

Price's Theorem for Complex Variates [Correspondence] - Information Theory, IEEE Transactions on

Price's theorem is derived for complex valued variates. The derivation differs from the existing derivation in two respects. First, the normal variates are not assumed to be circularly complex. Thus the result is more general. Second, the characteristic function of the complex variates is not used.

متن کامل

On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings

In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...

متن کامل

The Basic Theorem and its Consequences

Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...

متن کامل

The Local Limit Theorem: A Historical Perspective

The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994